
Asking language models how to represent data for fine-tuning

Usneek Singh
Ananya Singha

Abhijeet Awasthi
Aditya Kanade

Microsoft
Bangalore, India

Sumit Gulwani
Vu Le

Mukul Singh
Microsoft

Redmond, US

Gust Verbruggen
Microsoft

Keerbergen, Belgium

Abstract

Language models are often used for tasks in-
volving structured data like tables and graphs,
but there is no general approach for choosing
the best format to represent such data across
different tasks for fine-tuning. In this study, we
show how the pre-trained model can suggest
its own formats for representing structured data
in a general task. We also compare the perfor-
mance of different formats after fine-tuning the
models to see how they relate to the pre-trained
performance. Our results show that different
formats perform best across different models
after fine-tuning for the same task. Interest-
ingly, the format that performs best before fine-
tuning always remains one of the top choices
afterward. This approach can help avoid the
need for trial-and-error during fine-tuning, sav-
ing time, computational resources, and reduc-
ing the environmental impact of training large
models.

1 Introduction

Language models (LMs) have recently shown sig-
nificant promise in tasks that involve structured
data, such as tables (Sui et al., 2024) and graphs
(Wang et al., 2024a). One of the main challenges
in applying LMs to these tasks is choosing the
most effective format for representing structured
data. Several studies have explored how different
formats affect LM performance on structured data
tasks. For instance, formats like JSON and pandas
DataFrame constructors outperform markdown and
HTML for table understanding tasks (Singha et al.,
2023). Similarly, PIPE format is more effective
for some table reasoning tasks (Ye et al., 2023b).
For graph tasks, formats such as edge lists and
adjacency matrices, showing clear differences in
performance (Guo et al., 2023). While these studies
provide insights into specific tasks, they highlight
the complexity of format selection, which varies
across tasks and models.

The choice of format can influence model per-
formance, and determining the optimal format typ-
ically requires a trial-and-error approach, which is
both resource-intensive and time-consuming. This
challenge is further amplified when models re-
quire fine-tuning on new formats which is a more
costly process because it’s unclear whether the best-
performing format for pre-trained models will re-
main optimal after fine-tuning.

Even before fine-tuning, we face the challenge
of identifying a set of candidate formats that the
model can understand and perform well with. It
is not always obvious which formats the model
can interpret, and we risk overlooking formats that
could lead to better performance.

We address two key research questions:

• Can language models suggest formats they are
familiar with for representing structured data?

• Is there a correlation between pre- and post-
fine-tuning performance across different for-
mats or serializations?

To answer these questions, we explore three
types of structured data—tabular data-frames,
database schemas, and graphs—using three mod-
els: Mistral, Phi-3, and CodeLlama. For tabular
data, we focus on two text-to-code tasks: Excel
formulas (Singh et al., 2024) and Python functions
(Yin et al., 2022). For database schemas, we ana-
lyze the text-to-SQL dataset (Yu et al., 2018), and
for graph tasks, we use graph question-answering
data from Wang et al. (2024a).

We demonstrate that language models can
suggest formats for representing structured data
through a simple prompting approach. The models
show a preference for certain formats depending
on the task. Moreover, we find a strong correlation
between the best-performing format before and af-
ter fine-tuning. In 16 out of 18 settings, the format
that performed best with the pre-trained model also

performed best after fine-tuning. This suggests that
fine-tuning does not significantly alter the model’s
ability to work with its preferred formats.

Our key contributions are as follows:

• We show that language models can provide
their own suggestions for data formats, of-
fering a practical way to identify suitable for-
mats for structured data tasks.

• We demonstrate that performance after
fine-tuning closely aligns with the base
model performance across different for-
mats, reducing the need for extensive fine-
tuning experiments. This finding saves signif-
icant time and computational resources.

2 Experimental setup

We study this approach across three distinct data
structures: tables, database schemas, and graphs,
using three open-source language models for fine-
tuning: Phi-3, Mistral and CodeLlama.

2.1 Datasets

We consider three formats on four datasets (two
datasets for tables).

Tables Tables are a common structure in text-to-
code tasks. We focus on two such tasks: generating
Python code and Excel formulas from natural lan-
guage. For Python, we use the Arcade dataset (Yin
et al., 2022) involves generating code that uses
the pandas library to manipulate dataframes, select-
ing all 208 that we can execute for testing and
synthetically generating 4836 training and 1210
validation samples using gpt-4-turbo following
Singha et al. (2024). For Excel formulas, we use
the 5668 validated training samples (5246 train and
422 validation) and 200 test cases from Singh et al.
(2024).

Database schemas Text-to-SQL is another text-
to-code task, but input is a database schema instead
of a whole table. We use the Spider dataset (Yu
et al., 2018) of 1032 tests and split the training set
into 5509 training and 1482 validation examples.

Graphs Whereas tables have an intuitive textual
representation for language models, like CSV or
column-oriented JSON, graphs are less straightfor-
ward. Following an exploration of the ability of
LLMs to solve graph problems in natural language
(Wang et al., 2024a) we consider the tasks of cycle

detection (graph → bool), flow estimation (graph
→ float) and finding the shortest path (graph →
path). There are 100 tests for each task. A single
model is trained across all tasks on a training and
validation set of consist of 6500 and 500 samples
respectively, uniformly divided over all tasks.

2.2 Fine-tuning setup

We fine-tuned all models: Phi-3-
mini-4k-instruct (3.8B parameters), Mistral-
7B-Instruct-v0.2 (7B parameters), and
CodeLlama-7b-hf (7B parameters) using low-
rank adaptation (LoRA) (Hu et al., 2021) for 10
epochs. The best checkpoint was determined by
selecting the one with the lowest validation loss.
All experiments were conducted on a single A100
GPU. For all models, we use a batch size of 8,
optimizer as adamw_torch and weight decay of
0.001. For LoRA configuration, we set the rank to
64, alpha parameter to 16 and dropout to 0.1. The
learning rate for Mistral and CodeLlama was set to
2e-4 and for Phi-2 it was set to 1e-4.

2.3 Evaluation metrics

For all the code generation tasks, we use the
pass@k (Chen et al., 2021) metric based on ex-
ecution match of code, which estimates the proba-
bility that at least one out of k generations passes
all provided tests. We compute pass@5 over 10
predictions at temperature 0.6.

Similarly, for flow estimation and shortest path,
we use exact match with the pass@5 metric, based
on 10 predictions at a temperature of 0.6. For cy-
cle detection, which requires generating a binary
response (true or false) we use exact match for a
single prediction at zero temperature because using
pass@k for higher k gives inflated results.

3 Getting formatting suggestions

We can leverage the pre-trained model to suggest
format for data structures by providing a partial
prompt to the model, letting it auto-complete the
data structure and then parsing the format. A typi-
cal fine-tuning prompt includes a task description
(like writing formulas from natural language) and
some context on the problem instance (like the nat-
ural language utterance and a table). We structure
this prompt to ensure that the data structure is the
last part of the context, cut the prompt short right
before the data structure, and let the model auto-
complete the structure. An example for NL2F is

You are given a description of a formula
and a table (as a dataframe).
You write an Excel formula that matches the description
and that can be executed on the table.
Use structured references [@ColumnName] to refer to
columns.

Problem
Description
Insert two dashes between the first name and last name.
Table
```python
pd.DataFrame( data=[['Erik','Magnusson'],        

      ['Jon','Snow']],
columns=['first_name','last_name'])

Description

Context

Completion

Figure 1: An example of incomplete prompt and its
completion used for generating formatting suggestions.

shown in Figure 1.
We generate 10 predictions for each instance at

a temperature of 0.8 for each problem and anal-
ysed the results with regular expressions. In the
following two sections, we respectively analyse
the discovered formats and how their occurrence
statistics correlate to fine-tuning performance.

3.1 Suggested formats
An overview of occurrence statistics is shown in
Table 1 and detailed in the following paragraphs.

Dataframe tables We prefix the format with a
pd.DataFrame constructor to encourage the model
towards more variety, as the default mode is to
suggest markdown. We find the following formats

a⃝ Record: a list of row dictionaries, where each
row maps a column name to a single value.

b⃝ Column: a dictionary with each column name
mapped to a list of of its values.

c⃝ Row: a list of column names followed by a
list of values for each row.

d⃝ Row-invert: similar to Row, but with column
names listed after the row values.

and illustrate them in 2. Tables 1a and 1b show
that the column format is suggested significantly
more often than others for all models. Interestingly,
the second format differs across models and tasks.
CodeLlama has the most diversity, suggesting each
format more than 1.5% of completions.

Database schemas The most common formats
generated by the models are

a⃝ SQL code: the representation resembles SQL
code for creating tables, with column names
and data types enclosed within the statement.

Table 1: Occurrence statistics of formats suggested by
different models across all tasks.

Format Mistral Phi-3 CodeLlama

Column 85.60 85.40 69.70
Record 0.35 5.30 4.40
Row 6.55 0.15 2.50
Row-invert 6.15 5.40 21.65
Others 1.35 3.75 1.75

(a) Formula

Format Mistral Phi-3 CodeLlama

Column 80.53 91.92 73.27
Record 0.72 7.69 4.90
Row 3.51 0.05 2.93
Row-invert 13.61 0.24 15.48
Others 1.63 0.10 3.41

(b) Python

Format Mistral Phi-3 CodeLlama

Closed bracket 50.49 66.4 33.32
SQL code 26.39 16.10 29.57
Column list 22.35 13.3 21.43
Markdown 0.14 1.50 9.76
Others 0.61 3.48 5.92

(c) SQL

Task Format Mistral Phi-3 CodeLlama

CD

Adj. dict 40.61 10.00 19.80
Adj. matrix 0.20 13.00 10.10
Edge list 58.99 31.52 21.31
NL Graph 0.05 11.11 4.85
Others 0.15 34.37 43.94

FE

Adj. dict 27.90 12.70 17.40
Adj. matrix 3.00 4.00 15.80
Edge list 67.10 80.40 28.10
NL Graph 0.03 2.70 8.30
Others 2.00 0.02 30.40

SP

Adj. dict 74.8 45.90 29.20
Adj. matrix 0.60 0.60 8.60
Edge list 24.4 38.20 26.00
NL Graph 0.01 14.70 7.80
Others 0.19 0.60 27.40

(d) Graphs: cycle detection (CD), flow estimation (FE)
and shortest path (SP)

b⃝ Open column: a natural listing of table name,
a colon (:) and a list of column names. Unlike
the closed bracket format, column names can
be placed on new lines.

c⃝ Closed bracket: tables are represented with
column names enclosed in parentheses, simi-
lar to function parameters.

d⃝ Markdown: each schema is represented as a
table header in Markdown.

which are illustrated in Figure 3. All models favour



pd.DataFrame({
    "Year": [2017, 2020],
    "Quarter": ["Dec", "Sep"],
    "Head count": [2104, 3151],
     "Percent": [0.36, 0.42]
})

pd.DataFrame.from_records([
    { "Year": 2017, "Quarter": "Dec",
      "Head count": 2104, "Percent": 0.36 },
    { "Year": 2020, "Quarter": "Sep",
      "Head count": 3151,"Percent": 0.42 }
])

pd.DataFrame(
    data=[
        ["2017", "Dec", "2104", "0.36"],
        ["2020", "Sep", "3151", "0.42"],
    ],
    columns=["Year", "Quarter", "Head count", "Percent"],
)

pd.DataFrame(
    data=[
        ["2017", "Dec", "2104", "0.36"],
        ["2020", "Sep", "3151", "0.42"],
    ],
    columns=["Year", "Quarter", "Head count", "Percent"],
)

ca

b d

Figure 2: Table dataframe structures obtained from the base model completions for Formula and Python tasks.

the closed bracket format, but there is more vari-
ation than for tables. CodeLlama is again the
most diverse, with three formats almost getting
suggested an equal number of cases. It is also the
only model that suggests markdown a significant
number of times.

Graphs Following are the most commonly gen-
erated formats across all tasks

a⃝ Edge list: The connection between any two
nodes is represented as a triple (i, j, w) with
i and j nodes and w the weight of the edge
between them.

b⃝ Adjacency dictionary: Each node and its as-
sociated connected nodes are represented as a
list along with their weights.

c⃝ Adjacency matrix: The graph is represented
as an adjacency matrix format where each
entry (i, j) in the matrix represent the weight
between nodes i and j.

d⃝ NL: Each edge is presented as a sentence node
i is connected to node j with a weight of w.

which are detailed in Figure 4. we find adjacency
dictionary, adjacency matrix and edge list to be the
most commonly used representations. There is a
significant number of cases where the completions
are just textual description about the problem with-
out any graph representation. This prompted us
to add the NL format, which was used in recent
studies (Wang et al., 2024a; Ye et al., 2023a).

3.2 Occurrence versus performance
We study the correlation between occurrence statis-
tics and fine-tuning performance in Figure 5, for a
total of 18 cases (3 models × 6 problems). There

are some correlations (4/18) for Mistral on all
text-to-code and flow estimation, and for Phi-3 on
Python. For the majority of settings, however, it
does not hold, with 5/18 cases (Mistral on cycle
detection, Phi-3 on formula and flow estimation,
CodeLlama on formula and SQL) obtaining the
worst performance for the most common format.
This motivates the analysis between performance
before and after fine-tuning to still determine an ap-
propriate format without different fine-tuning runs.

4 Performance before and after
fine-tuning

In order to save time and resources on evaluating
the performance of different formats, we study the
correlation between the performance before and
after fine-tuning on different formats to identify
any underlying patterns.

We use a few-shot prompt with three examples
in the prompt to evaluate base model performance.
We report results averaged over three fine-tuning
runs (with different random seeds).

4.1 Results

Formula (Figure 6a) We observe that the best
performance on the Mistral base model is achieved
with the Column format, which also delivers the
highest performance after fine-tuning. For Phi-3,
both Row and Row-invert format give equal and
highest performance before and after fine-tuning.
Similarly, for CodeLlama, the Record format yield-
ing the best base model performance continue to
give highest performance post fine-tuning. This
indicates that different models prefer different rep-
resentations for the same task. However, the format
that performs best during base model inference con-
sistently leads to the best fine-tuning results. For



CREATE TABLE department (
    Department_ID number,
    Name text,
    Creation text,
    Ranking number,
);

CREATE TABLE management (
    department_ID number,
    head_ID number,
    temporary_acting text,
);

a

## department
| Department_ID | Name | Creation | Ranking | 
| ------------- | ---- | -------- | ------- |

## management
| department_ID | head_ID | temporary_acting |
| ------------- | ------- | ---------------- |

Table department, columns: Department_ID, Name, Creation, Ranking
Table management, columns: department_ID, head_ID, temporary_acting

department(Department_ID, Name, Creation, Ranking)
management(department_ID, head_ID, temporary_acting)

b

c

d

Figure 3: Database schema representations obtained from the base model completions for the SQL task.

{'1': [(2, 4), (3, 1)],
 '2': [(1, 4), (4, 2)]}

[[0 4 1 0]
 [4 0 0 2]]

[(1, 2, 4), (1, 3, 1),
 (2, 1, 4), (2, 4, 2)]

Node 1 is connected to Node 2 with an edge of weight 6.
Node 3 is connected to Node 4 with an edge of weight 5.

a

b
c

d

Implicit nodes

Figure 4: Graph representations obtained from base
model completions.

Mistral, the Row-invert format shows improved
performance after fine-tuning, despite being the
lowest-performing format in the base model. This
suggests that the model learns to better recognize
its structure, likely because it closely resembles the
markdown format. Interestingly, in all cases, Row
and Row-invert formats show same performance
after fine-tuning across all models, even though
their performance differs before fine-tuning likely
because, after fine-tuning, the position of columns
and rows no longer significantly affects the model’s
performance.

Python (Figure 6b) We observe that the best per-
formance for Mistral, both on the base model and
after fine-tuning, comes from the Column format,
consistent with the Formula task. CodeLlama per-
forms best with the Record format, both before and
after fine-tuning. These results hold true for both
the Formula and Python tasks, indicating that the
Column format for Mistral and the Record-column
format for CodeLlama are generally well-suited
for tabular understanding tasks. For Phi-3, the per-
formance remains almost same after fine-tuning
(except for Row format for which there is a slight
decline). This could be because the model was
already exposed to similar data during its train-
ing, resulting in minimal additional learning during

fine-tuning. However, the record format remains
best before and after fine-tuning for Phi-3. For the
Python task, the trend holds that the format yield-
ing the highest performance on the base model
continues to do so post fine-tuning. We also see
that it is possible for multiple formats to achieve
the highest performance post fine-tuning, but the
top-performing format on the base model is always
among the leading candidates (as seen with case of
record and column Format for Phi-3).

SQL (Figure 6c) For Mistral, the best perfor-
mance both before and after fine-tuning is achieved
with the Closed bracket format. Phi-3 gives equal
and best performance for three formats before fine-
tuning: closed bracket, SQL code and open column,
out of which 2 formats remain the best after fine-
tuning: closed Bracket & SQL code. In the case
of CodeLlama, the performance either remains the
same or improves only for the open column for-
mat. Since the base model performance for CodeL-
lama is already comparable to the fine-tuned per-
formance of the other models, it’s likely that the
model has encountered this data during training.
There is an inconsistency with CodeLlama: the
best-performing format before fine-tuning is SQL
code, but after fine-tuning, it is the open column
format. One hypothesis is that the open column for-
mat has the fewest notation to learn, which enables
more effective learning during fine-tuning. Overall,
the very close performance of different formats on
the base model makes it challenging to distinguish
the best representation for this task.

Graphs (Figure 7) In all settings, the format that
performs best before fine-tuning performs best af-
ter fine-tuning. Interestingly, different models have
different preferences for different tasks, even if
the same model is fine-tuned. Even though the



0 20 40 60 80
% Occurrence

0.31

0.32

0.33

0.34

0.35

0.36

0.37

Fi
ne

-tu
ni

ng
 p

er
fo

rm
an

ce

Model
Mistral
Phi-3
CodeLlama

Format
Column
Record
Row
Row invert

(a) Formula

0 25 50 75
% Occurrence

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Fi
ne

-tu
ni

ng
 p

er
fo

rm
an

ce

Model
Mistral
Phi-3
CodeLlama

Format
Column
Record
Row
Row invert

(b) Python

0 20 40 60
% Occurrence

0.66

0.67

0.68

0.69

0.70

0.71

Fi
ne

-tu
ni

ng
 p

er
fo

rm
an

ce

Model
Mistral
Phi-3
CodeLlama

Format
Closed bracket
SQL code
Open column
Markdown

(c) SQL

0 20 40 60
% Occurrence

0.2

0.3

0.4

0.5

0.6

Fi
ne

-tu
ni

ng
 p

er
fo

rm
an

ce

Model
Mistral
Phi-3
CodeLlama

Format
Adj. Dict
Adj. matrix
Edge List
NL Graph

(d) Cycle Detection

0 20 40 60 80
% Occurrence

0.3

0.4

0.5

0.6

0.7

0.8

Fi
ne

-tu
ni

ng
 p

er
fo

rm
an

ce

Model
Mistral
Phi-3
CodeLlama

Format
Adj. Dict
Adj. matrix
Edge List
NL Graph

(e) Flow estimation

10 20 30 40 50
% Occurrence

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fi
ne

-tu
ni

ng
 p

er
fo

rm
an

ce

Model
Mistral
Phi-3
CodeLlama

Format
Adj. Dict
Adj. matrix
Edge List
NL Graph

(f) Shortest Path

Figure 5: Relation between occurrences of formats and fine-tuning performance on text-to-code tasks for different
models. There is some correlation, especially for the Mistral model, but it does not always hold up. This motivates
the analysis between performance before and after fine-tuning on these formats in Section 4.

NL format seems the most natural for a language
model, it does not always outperform the structured
formats—perhaps because the models also tend to
favor more compact structures over verbose inputs
for certain tasks. CodeLlama does better with adja-
cency dictionary on 2/3 tasks, which relates with
it best performance with record format (dictionary
like structures) in text-to-code tasks. Adjacency
matrix seems to be the least performing format for
all models, which shows it is not a suitable structure
for shortest path task.

4.2 Conclusion

In summary, performance before fine-tuning allows
to predict performance after fine-tuning in 16/18

settings (7/9 for text-to-code and 9/9 for graphs).
We conclude that the pre-trained model allows us
to select which format to use for fine-tuning.

5 Related Work

Recent studies have explored various techniques
to represent complex structures, such as tables,
graphs, and database schemas, for prompting or in-
context learning in large language models (LLMs).
These representations are important for enabling
LLMs to understand structural information effec-
tively. Research has shown that the performance
of LLMs can be sensitive to the choice of format
which highlights the need to determine optimal rep-
resentations for fine-tuning tasks (Fang et al., 2024;



B A
State

0.15

0.20

0.25

0.30

0.35

Pe
rf

or
m

an
ce

Mistral

B A
State

Phi-3

B A
State

CodeLlama

Format
Column Record Row Row invert

(a) Formula

B A
State

0.20

0.25

0.30

Pe
rf

or
m

an
ce

Mistral

B A
State

Phi-3

B A
State

CodeLlama

Format
Column Record Row Row invert

(b) Python

B A
State

0.55

0.60

0.65

0.70

Pe
rf

or
m

an
ce

Mistral

B A
State

Phi-3

B A
State

CodeLlama

Format
Closed SQL code Open Markdown

(c) SQL

Figure 6: Performance before and after fine-tuning on
text-to-code tasks. In 7/9 settings, we can select the
right format from the performance before fine-tuning.
In one setting (Phi-3 on SQL) the best performance
before fine-tuning is tied with a winner after fine-tuning.
Surprisingly, CodeLlama does not learn anything for
the SQL code format, allowing it to be surpassed by the
open bracket format after fine-tuning.

Fatemi et al., 2023).

Tabular data representation For tabular data,
Sui et al. (2024) proposed a method where LLMs
generate explanations for table structures, which
are then used to re-prompt the model for improved
performance. Other approaches such as Gong et al.

B A
State

0.4

0.5

0.6

0.7

0.8

Pe
rf

or
m

an
ce

Mistral

B A
State

Phi-3

B A
State

CodeLlama

Format
Adj. Dict Adj. matrix Edge List NL

(a) Cycle Detection

B A
State

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rf

or
m

an
ce

Mistral

B A
State

Phi-3

B A
State

CodeLlama

Format
Adj. Dict Adj. matrix Edge List NL

(b) Flow estimation

B A
State

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rf

or
m

an
ce

Mistral

B A
State

Phi-3

B A
State

CodeLlama

Format
Adj. Dict Adj. matrix Edge List NL

(c) Shortest Path

Figure 7: Performance comparison of different formats
on Graph Q&A tasks before fine-tuning (base) and after
fine-tuning

(2020), employed a template-based approach to
convert table records into natural language sen-
tences, concatenating them for final representation.
Singha et al. (2023), showed that certain formats,
like JSON or df-loader, work best for particular
table understanding tasks, while (Ye et al., 2023b)
and (Wang et al., 2024b) demonstrated the effec-
tiveness of the PIPE format for table reasoning
tasks. Furthermore, Jaitly et al. (2023) explored
LaTeX-based serialization for table classification
tasks. Despite these insights, it remains unclear



whether a generalized approach can be adopted for
different models and different tasks.

Graph structure representation Similarly, for
graph-based tasks, various methods have been pro-
posed to encode graph structures. Earlier works,
such as Wang et al. (2024a) and Ye et al. (2023a),
employed natural language descriptions to repre-
sent graph edges and nodes uniquely for each sub-
task. However, these verbalized graphs can be-
come lengthy, unstructured, and difficult for both
humans and models to process (Jin et al., 2023).
While Guo et al. (2023) suggested that appending
explanations to the graph structure can improve
performance, our results have been inconsistent.
Alternative approaches, like Chai et al. (2023),
introduced encoder-decoder architectures specif-
ically designed to learn graph encodings. How-
ever, our study aims to assess the impact of for-
mat representation within the LLM itself for dif-
ferent GraphQA tasks, without relying on exter-
nal encoders. Guo et al. (2023) evaluated three
common formats—edge lists, adjacency matrices,
and GraphML descriptions—for their effectiveness
in graph tasks. However, whether these formats
exhaustively represent the possibilities LLMs can
handle remains an open question.

Other representations In the context of database
schema representation for Text-2-SQL tasks, Gao
et al. (2023) explored different formats inspired
by external knowledge sources such as OpenAI
prompt demonstrations and Alpaca SFT prompts.
While their work leverages predefined formats, our
study seeks to derive the schema representations
directly from the model’s knowledge.

6 Conclusion

Our study shows that language models can generate
their own suggestions for representing structured
data in a general task, and these suggestions are
effective for fine-tuning. We also investigate the
correlation between base model performance and
post-finetuning outcomes across different formats.
Notably, the format that performs best on the base
model consistently ranks among the top candidates
after fine-tuning. Through experiments on various
data structures, we show that these findings are
broadly applicable. This approach offers a practical
way to select appropriate formats for fine-tuning
without relying on trial and error, saving both time
and computational resources during training.

7 Limitations

While we have shown a correlation between the
performance of the base model and the fine-tuned
model, this analysis is limited to a single piece of
structured data in the prompt. We have not evalu-
ated other parts of the prompt, nor the combination
of different sources. Since our focus was specif-
ically on structured data, we have restricted our
analysis to that area.

Additionally, we observed two instances in our
study—text-to-Python for Phi-3 and text-to-SQL
for CodeLlama—where fine-tuning did not yield
significant improvements over base model perfor-
mance. We understand that these are common tasks,
and it is possible that the base model was already
trained on similar tasks. However, we cannot defini-
tively determine whether this is the case.

References
Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han,

Xiaohai Hu, Xuanwen Huang, and Yang Yang. 2023.
Graphllm: Boosting graph reasoning ability of large
language model. arXiv preprint arXiv:2310.05845.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun Jane Qi, Scott Nickleach, Diego
Socolinsky, Srinivasan Sengamedu, Christos Falout-
sos, et al. 2024. Large language models (llms) on tab-
ular data: Prediction, generation, and understanding-
a survey.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.
2023. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Heng Gong, Yawei Sun, Xiaocheng Feng, Bing Qin,
Wei Bi, Xiaojiang Liu, and Ting Liu. 2020. Tablegpt:
Few-shot table-to-text generation with table structure
reconstruction and content matching. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 1978–1988.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi
He, and Shi Han. 2023. Gpt4graph: Can large
language models understand graph structured data?



an empirical evaluation and benchmarking. arXiv
preprint arXiv:2305.15066.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Sukriti Jaitly, Tanay Shah, Ashish Shugani, and
Razik Singh Grewal. 2023. Towards better serializa-
tion of tabular data for few-shot classification. arXiv
preprint arXiv:2312.12464.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji,
and Jiawei Han. 2023. Large language models on
graphs: A comprehensive survey. arXiv preprint
arXiv:2312.02783.

Usneek Singh, José Cambronero, Sumit Gulwani,
Aditya Kanade, Anirudh Khatry, Vu Le, Mukul
Singh, and Gust Verbruggen. 2024. An empirical
study of validating synthetic data for formula genera-
tion. arXiv preprint arXiv:2407.10657.

Ananya Singha, José Cambronero, Sumit Gulwani,
Vu Le, and Chris Parnin. 2023. Tabular represen-
tation, noisy operators, and impacts on table struc-
ture understanding tasks in llms. arXiv preprint
arXiv:2310.10358.

Ananya Singha, Bhavya Chopra, Anirudh Khatry, Sumit
Gulwani, Austin Henley, Vu Le, Chris Parnin, Mukul
Singh, and Gust Verbruggen. 2024. Semantically
aligned question and code generation for automated
insight generation. In Proceedings of the 1st Inter-
national Workshop on Large Language Models for
Code, pages 127–134.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645–654.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2024a.
Can language models solve graph problems in nat-
ural language? Advances in Neural Information
Processing Systems, 36.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, et al. 2024b. Chain-of-table: Evolving tables in
the reasoning chain for table understanding. arXiv
preprint arXiv:2401.04398.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu,
Yongfeng Zhang, et al. 2023a. Natural language is
all a graph needs. arXiv preprint arXiv:2308.07134,
4(5):7.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023b. Large language
models are versatile decomposers: Decomposing ev-
idence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 174–184.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
et al. 2022. Natural language to code generation in
interactive data science notebooks. arXiv preprint
arXiv:2212.09248.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.


